Copied to
clipboard

G = C62.(C2xC4)  order 288 = 25·32

The non-split extension by C62 of C2xC4 acting faithfully

metabelian, soluble, monomial

Aliases: C62.(C2xC4), D4.(C32:C4), (D4xC32).C4, C32:7D4.C4, C32:4Q8.C4, C32:7(C8oD4), C62.C4:5C2, C12.D6.4C2, C32:M4(2):6C2, C3:Dic3.32C23, C32:2C8.11C22, C3:S3:3C8:4C2, C4.5(C2xC32:C4), (C3xC12).5(C2xC4), (C2xC32:2C8):8C2, C22.1(C2xC32:C4), C2.8(C22xC32:C4), (C4xC3:S3).37C22, C3:Dic3.23(C2xC4), (C3xC6).30(C22xC4), (C2xC3:Dic3).100C22, (C2xC3:S3).20(C2xC4), SmallGroup(288,935)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C62.(C2xC4)
C1C32C3xC6C3:Dic3C32:2C8C2xC32:2C8 — C62.(C2xC4)
C32C3xC6 — C62.(C2xC4)
C1C2D4

Generators and relations for C62.(C2xC4)
 G = < a,b,c,d | a6=b6=c2=1, d4=b3, ab=ba, cac=ab3, dad-1=a-1b4, bc=cb, dbd-1=a4b, cd=dc >

Subgroups: 456 in 102 conjugacy classes, 34 normal (18 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, D4, D4, Q8, C32, Dic3, C12, D6, C2xC6, C2xC8, M4(2), C4oD4, C3:S3, C3xC6, C3xC6, Dic6, C4xS3, C2xDic3, C3:D4, C3xD4, C8oD4, C3:Dic3, C3:Dic3, C3xC12, C2xC3:S3, C62, D4:2S3, C32:2C8, C32:2C8, C32:4Q8, C4xC3:S3, C2xC3:Dic3, C32:7D4, D4xC32, C3:S3:3C8, C32:M4(2), C2xC32:2C8, C62.C4, C12.D6, C62.(C2xC4)
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C8oD4, C32:C4, C2xC32:C4, C22xC32:C4, C62.(C2xC4)

Character table of C62.(C2xC4)

 class 12A2B2C2D3A3B4A4B4C4D4E6A6B6C6D6E6F8A8B8C8D8E8F8G8H8I8J12A12B
 size 112218442991818448888999918181818181888
ρ1111111111111111111111111111111    trivial
ρ2111111111111111111-1-1-1-1-1-1-1-1-1-111    linear of order 2
ρ3111-1-111-111-1111-111-11111-111-1-1-1-1-1    linear of order 2
ρ4111-1-111-111-1111-111-1-1-1-1-11-1-1111-1-1    linear of order 2
ρ511-1-1111111-1-111-1-1-1-1-1-1-1-1-11111-111    linear of order 2
ρ611-1-1111111-1-111-1-1-1-111111-1-1-1-1111    linear of order 2
ρ711-11-111-1111-1111-1-11-1-1-1-1111-1-11-1-1    linear of order 2
ρ811-11-111-1111-1111-1-111111-1-1-111-1-1-1    linear of order 2
ρ911-1-1-1111-1-11111-1-1-1-1ii-i-i-i-ii-iii11    linear of order 4
ρ101111-1111-1-1-1-1111111-i-iiii-ii-ii-i11    linear of order 4
ρ11111-1111-1-1-11-111-111-1-i-iii-i-iii-ii-1-1    linear of order 4
ρ1211-11111-1-1-1-11111-1-11ii-i-ii-iii-i-i-1-1    linear of order 4
ρ1311-1-1-1111-1-11111-1-1-1-1-i-iiiii-ii-i-i11    linear of order 4
ρ141111-1111-1-1-1-1111111ii-i-i-ii-ii-ii11    linear of order 4
ρ15111-1111-1-1-11-111-111-1ii-i-iii-i-ii-i-1-1    linear of order 4
ρ1611-11111-1-1-1-11111-1-11-i-iii-ii-i-iii-1-1    linear of order 4
ρ172-2000220-2i2i00-2-20000878388500000000    complex lifted from C8oD4
ρ182-20002202i-2i00-2-20000858838700000000    complex lifted from C8oD4
ρ192-2000220-2i2i00-2-20000838785800000000    complex lifted from C8oD4
ρ202-20002202i-2i00-2-20000885878300000000    complex lifted from C8oD4
ρ2144440-21400001-2-21-2100000000001-2    orthogonal lifted from C32:C4
ρ2244-440-21-400001-2-2-1210000000000-12    orthogonal lifted from C2xC32:C4
ρ23444401-240000-211-21-20000000000-21    orthogonal lifted from C32:C4
ρ2444-4401-2-40000-2112-1-200000000002-1    orthogonal lifted from C2xC32:C4
ρ25444-401-2-40000-21-1-21200000000002-1    orthogonal lifted from C2xC32:C4
ρ2644-4-401-240000-21-12-120000000000-21    orthogonal lifted from C2xC32:C4
ρ27444-40-21-400001-221-2-10000000000-12    orthogonal lifted from C2xC32:C4
ρ2844-4-40-21400001-22-12-100000000001-2    orthogonal lifted from C2xC32:C4
ρ298-8000-4200000-240000000000000000    symplectic faithful, Schur index 2
ρ308-80002-4000004-20000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C62.(C2xC4)
On 48 points
Generators in S48
(1 39 17 31 13 48)(2 41 14 32 18 40)(3 42 15 25 19 33)(4 34 20 26 16 43)(5 35 21 27 9 44)(6 45 10 28 22 36)(7 46 11 29 23 37)(8 38 24 30 12 47)
(1 5)(2 10 18 6 14 22)(3 7)(4 24 16 8 20 12)(9 13)(11 15)(17 21)(19 23)(25 29)(26 47 34 30 43 38)(27 31)(28 40 45 32 36 41)(33 37)(35 39)(42 46)(44 48)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 46)(10 47)(11 48)(12 41)(13 42)(14 43)(15 44)(16 45)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,39,17,31,13,48)(2,41,14,32,18,40)(3,42,15,25,19,33)(4,34,20,26,16,43)(5,35,21,27,9,44)(6,45,10,28,22,36)(7,46,11,29,23,37)(8,38,24,30,12,47), (1,5)(2,10,18,6,14,22)(3,7)(4,24,16,8,20,12)(9,13)(11,15)(17,21)(19,23)(25,29)(26,47,34,30,43,38)(27,31)(28,40,45,32,36,41)(33,37)(35,39)(42,46)(44,48), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,39,17,31,13,48)(2,41,14,32,18,40)(3,42,15,25,19,33)(4,34,20,26,16,43)(5,35,21,27,9,44)(6,45,10,28,22,36)(7,46,11,29,23,37)(8,38,24,30,12,47), (1,5)(2,10,18,6,14,22)(3,7)(4,24,16,8,20,12)(9,13)(11,15)(17,21)(19,23)(25,29)(26,47,34,30,43,38)(27,31)(28,40,45,32,36,41)(33,37)(35,39)(42,46)(44,48), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,46)(10,47)(11,48)(12,41)(13,42)(14,43)(15,44)(16,45)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,39,17,31,13,48),(2,41,14,32,18,40),(3,42,15,25,19,33),(4,34,20,26,16,43),(5,35,21,27,9,44),(6,45,10,28,22,36),(7,46,11,29,23,37),(8,38,24,30,12,47)], [(1,5),(2,10,18,6,14,22),(3,7),(4,24,16,8,20,12),(9,13),(11,15),(17,21),(19,23),(25,29),(26,47,34,30,43,38),(27,31),(28,40,45,32,36,41),(33,37),(35,39),(42,46),(44,48)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,46),(10,47),(11,48),(12,41),(13,42),(14,43),(15,44),(16,45),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

Matrix representation of C62.(C2xC4) in GL6(F73)

0460000
2700000
0007200
0017200
0000072
0000172
,
7200000
0720000
001000
000100
0000721
0000720
,
010000
100000
001000
000100
000010
000001
,
2200000
0220000
000010
000001
000100
001000

G:=sub<GL(6,GF(73))| [0,27,0,0,0,0,46,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,0,0,0,0,0,0,22,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

C62.(C2xC4) in GAP, Magma, Sage, TeX

C_6^2.(C_2\times C_4)
% in TeX

G:=Group("C6^2.(C2xC4)");
// GroupNames label

G:=SmallGroup(288,935);
// by ID

G=gap.SmallGroup(288,935);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,219,80,9413,362,12550,1203]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^2=1,d^4=b^3,a*b=b*a,c*a*c=a*b^3,d*a*d^-1=a^-1*b^4,b*c=c*b,d*b*d^-1=a^4*b,c*d=d*c>;
// generators/relations

Export

Character table of C62.(C2xC4) in TeX

׿
x
:
Z
F
o
wr
Q
<